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SUMMARY 

STOCHASTIC APPROXIMATION WITH CORRELATED DATA 

New almost sure convergence results are developed for a special 

form of the multidimensional Robbins-Monro (RM) stochastic approximation 

procedure.  The spe Lai form treated can be viewed as a stochastic 

■ .^«« .-n t-he solution w = w t RP of the linear equations Rw = P, approximation to tne soiutiuu w  w^ 

where R is a pxp positive definite symmetric matrix.  This special 

form commonly arises in adaptive signal processing applications. 

Essentially, previous convergence results for the RM procedure contain 

a common "conditional expectation condition" which is extremely 

difficult (if not impossible) to satisfy when the "training data" is 

a correlated sequence.  In contrast, the new convergence results 

incorporate moment conditions and covariance function decay rate 

conditions.  The ease with which these results can be applied in 

many cases is illustrated. 



'•  Introduction.  Consider the set of linear equations Rw=P, 

where R is a pxp symmetric positive definite matrix, and w and P are 

pxl matrices.  In case R and P are unknown, and the solution, w = w^R P, 

is desired, many techniques are avallahle fur finding an estimate of 

w .  In many adaptive signal processing applications, a recursive, 
0 

computationally efficient procedure for estimating wo is an importanl 

issue.  A suitable multidimensional version of the Robbins-Monro (RM) 

stochastic approximation procedure (Robbins and Monro (1951)) for re- 

cursively estimating wo is given by 

where CP 1 is a sequence of random variables, P^, ifj   is a sequence 
n 

of random pxp matrices, {%}   is a sequence of positive constants, and 

W r.RP is arbitrary.  It is assumed that Pn and Fn are functionally 

independent of W^.... .W^  It is somewhat helpful to consider wo to 

be the vector which minimizes C(w) = w'Rw - 2w'P, where ' denotes matrix 

transpose,  interpreting Fn and Pn as "instantaneous estimates" of R 

and P, respectively, the relationship between (1) and (deterministic) 

steepest descent procedures is obvious.  Consequently, the family of 

algorithms represented by (1) has an interpretation as a family of 

"stochastic gradient-following" algorithms. 

Algorithm (1) provides a suitable framework for the analytical 

treatment of many of the algorithms that have been proposed in the 

engineering literature for adaptive signal processing applications 

(e.g., see Sakrison (1966) or Farden (1975)).  For such applications, 

any "conditional expectation assumption" is extremelv difficult 

(if not impossible) to establish.  Such conditions are  commonly required by 



existing convergence theorems treating the RM procedure.  For example, 

see Schmetterer (1961, 1969), Sakrison (1966), or Farden (1975) 

for a discussion of existing results.  The practical application of 

existing convergence results for the RM procedure to (1) esse tially 

requires that {Pn - ^w) is an uncorrelated sequence for all fixed 

parameter v.RP.     The special form of the RM procedure represented by 

(1) enables us to obtain convergence results which make use of no 

such conditional expectation requirements and have a decidedly differ- 

ent flavor than existing results for the RM procedure. 

The contents and organization of this paper are as follows. 

Notation and basic assumptions are presented in Section 2.  The 

framework presented in Assumption (2.1) establishes that the sequences 

{> } and (F ) are such that the "time averages" of E(Fa) and E^), 
n       n 

respectively, are eqv ' to R and P.  The generalization resulting from 

these definitions is applicable to cases where M^)  and E^ are periodic, 

such as occurs in some adaptive digital communication applications. 

In Section 3, it is shown that Assumptions (2.1) through (2.7) are 

sufficient for the a.s. convergence of Wn to wo. The proofs of 

Lemma (3.1) and Theorem (3.2) below are quite similar in spirit to 

the proofs of Theorem (6.1) and Theorem (6.3) of Albert and Gardner 

(1967), respectively.  However, the seemingly less restrictive assumptions 

made in the present work, the simplification in proof resulting for 

symmetric F , and the basic differences in the form of algorithms 

treated here are offered as justification for including the results 

of Section 3 in this paper.  Furthermore, in contrast with the 



assumptions made by Albert and Gardner (1967), the form of Assumptions 

(2.3) - (2.7) permits us to exploit the Borel-Cantelli Lemma and 

the results of Serfling (1970) to prove Corollary (4.5).  Corollary 

(4.5) provides easily verified sufficient conditions for Assumptions 

(23)-(2.7), and hence, for the a.s. convergence of W^ to w^  Several 

special cases of (1) are considered in Section 5 to illustrate the 

application of these results.  In case Fn and Pn are strongly con- 

sistent estimates of R and P, respectively, the much simpler convergence 

result of Section 6 is applicable. 

'.. "'■ 
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2-  Notation and basic assumptions.  The norm of a pxp matrix 

A, denoted by ||A||, is defined here by ||A| ■ sup |Ax|, XER , where 
|x| = l 

RP denotes p-dimensional Euclidean space and |x|, xcRP denotes the usual 

p-dimensional Euclidean norm.  For A real and symmetric, | |A| | = max {| A^A) |), 

where {X (A)}? , are the p eigenvalues of A.  The minimum and maximum 

eisenvalues of a pxp matrix A are denoted by X  (A) and X       (A), respectively. 0 r mln        max 

The element of a pxp matrix A occurring in the ith row and jth column of 

A is denoted by (A). ..  Similarly, the ith element of XERP is denoted by 
i.J p 

(x) .  The trace of a pxp matrix A is denoted by tr(A) = £ ,(A)   .  The 
i i. x  i, i 

symbol 0 is used to denote the additive identity for R ,R , or to denote 

a pxp matrix of zeros.  Square brackets [ ] are used to denote integer 

part.  Finally, subscripted variables like Vfe, n^, iL, etc. are sometimes 

denoted by v(k), nU), fc(i), etc. 

All random variables are assumed to be defined on a probability 

space (fl, F, P).  All relationships between random variables are 

to be interpreted to hold with probability one. 

It is worth emphasizing that Corollary (4.5) below establishes 

sufficient conditions for Assumptions (2.3)-(2,7). 

(2.1)  ASSUMPTION.  The sequence {W T ., W eRP, satisfies the 
n n=l  n 

recursion 

(1)  W ,  = W -I- p (P - F W ), n > 1, 
n+1   n   n n   n n    — 

where {P } is a sequence of random variables, P eR, {F } is a 
n n      n 

sequence of real symmetric nonnegative definite (pxp) random matrices, 

{u^l is a sequence of positive real numbers, and W E.R
P
 is arbitrary. 

-1 -i n 1 n 

Define wo = K P, where R = lim  ^ E (F^), P = lim n"1^ £(?.) 

It is assumed that E(F£), E(P^) exist,that the above limits exist. 

n+a 
and that R is positive definite. Further, it is assumed that n   E  E(F ) 

£=a+l   " 
converges uniformly to R as n-**1 for all non-negative integers a. 
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Defining V W - w and C  = P  - F W . we have 
n   n   o n   n   no 

(2)     V   ■ (I - u P )V + y„C  . (-/:-'  vn+l       Hn n n   n n 

For a sequence (A.) of pxp matrices, define 

..A . if k 1 £ 

k < P.. 

O) n A = 
l-£ 

)VVr 
I I. if l 

Defining      Q£ ra =  i1     ^ ' ^ Fj > » An " |-1 Vl»A y.c,. 

j-Ä 

and iterating (2), one obtains 

a.s. 

^>       n+1  vl,n 1   n 

(2.2) ASSUMPTION. The sequence {y^ is « nonincreasing sequence 

of positive constants ^ '  O^1),  0 < lim npn < *>• 

(2.3) ASSUMPTION. Assumptions (2.1) and (2.2) hold and ynllFnll 

0 as n -o. a+n 

_ 1        AS 
(2.4) ASSUMPTION. Assumption (2.1) holds and n l    f.* *R 

k=a+l 

as n -" ro for all positive integers a. 

(2.5) ASSUMPTION.  There exists a sequence of random integers 

{v.} with 1 = v1 < y2 < v3 <... such that, with pk = vk+1 - vk and 

J = N, , v +1 , ..., v,^ -1) we have (i) P = 5+[k ], for some 
k    k  k k+J- K 

a, 0 < a < 1, (ii) P"1 X  ( Z    F )> 6 > 0, and (iii) B^^C 2 F.)<Y<». 

JeJk ' 3£Jk 
The quantities |f 6, and Y are all random variables that are Independent of k. 

(2.6) ASSUMPTION. Assumptions (2.1) and (2.2) hold and there 
. n 

exists a random variable St:R such that S= £=1^^^ 
.s. 

C, ^""S as »♦". 
, k 

(2.7) ASSUMPTION. Assumptions (2.1) and (2.6) hold and 

0 as n-«0. 

3.  Almost sure convergence of W to wo. 

IF (S - S  .) 1 n      n-1 
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m*4-ism*   (P ])-(2.5)  are satisfied,   then 
(3.1) LEMMA.  ■',.   'umpttons   U>. u   \*'»t 

It i (7. o •  <-) 

" .      „  i«t K = K(n) be such that 
PROOF.  For any positive integer n, let K  M ) 

n       , and hence UQ,  II 1 llQv(K),n' 
neJK.  Then Q1 n ■ Qv(K),n ^.vCK)-!' J-« 

rt F may be expressed as 
liQlv(K)-l"-  Defining rk = Qv(k),v(k+1)-1.  k 

Pk q 
q
 7. TT   Un/.,v  f, 

r - T _  Z  u F. + Z  {-l)q S     /, UUi) 'Uq-i+D 
k '    JcJ, -1 J   q=2      H,q  

i=1 

«here ^ - (V\ ! ^ > ^ >• • • > ^v^1'2'"" ^}' 

so that (for ^j^.iV*15 

P. av~a 
2  Pk+1 

k q p 5+ -J—=  

I |rkl lil-v^D-l'k^^vW^^ -^vCW)-1 k     1 " "k 

*." .k - .^f ** *• ™ •'"lity holds prOVided that "" ' l' 

. ! anH Mr 11 < i-e, for a11 k - ko' where 
integer ko such that ^k 1 2 

and ' |ri<.1 ' "  k 0 

ß _ 1 p      p 6.  Similarly, for all K > ko and neJ^.,   | \%(K) ^ ^  ' 

< ^ M ^  (l-ßj4 M exP(- ¥  , E1  ^(k+D-lV ' 
— 9    .      K —t •"  k=k 

i-,"       ^k c 
o 

since 1-* < e- for aU real x.  It Is easily she« that Assumptions 

,2 2) and (2.5) l-ply that the above suction diverges to - a, K * -. 

Consequently, I |Q1$UI l*^'0 a8 n " ~ 

(3.2) THEOREM. If Assumptiona  (2.1^(2.7) are satisfied,   the m 

\V  \a*e'   0 as n 
n 

|A 'a--S 
' n 

1/  LVW  'i 

PROOF.  From (2.1.4) and Lemma (3.1). it remains only to show that 

^- 0 as n -> -.  From Assumptions (2.1) and (2.6), with S0 = 0 and 

0     = I, we have vn+l,n 

 _  



^1)     A"    S     (\tn" Vl^   Sk-1 + Sn 
k=l 

■   l    Vl,n  Wk-l  + Sn 
k=l 

DefininR 

B 
n 

..„       .^ Iw.n Vlt (S-8W)" 

and 

I) 
n 
L    Q, Ui F, S, 

n .     k+l,n    k k 
k=l 

(1)  may be expressed as An - 
B
ljn  

D
n 

+ S
n- 

From Lemma 1 of Albert and Gardner (1967, p. 189), Dn = (I-Q^S. so 
ia.0. 

that An = Bl,n + (VS) + Ql,n S-  SinCe 'n 'VS* ' ^ ''^J 
as n - - (Assumption (2.6) and Lemma (3.1)), it remains to show that 

IB. 

Using the same notation as in the proof of Lemma (3.1), JB^J 

may be bounded as 

0 

'l.n' 
a+8, 0 as n > <». 

5l,nl ^llQv(K),n 

K-l  K-l 
I E   TT  r, Z  Q 
k=k i-k+1  jeJ, 

O B 

+    Q v(K),n 

k-l ko-l 

K-  d-V1'  -^ 'i • T Vl.v(W)-XWj?j(S-SJ-X) 
«»it    l    k-l i=k+l   jeJ, 

o ^ 

n 

i  2 
k-v(K) 

Vl,n\Fk(S-Sk-l) 

Note that for all j ,tne J and k > ko we have | JQ^J I 1 1 + f (yv(k)PkY)  <| 
q=2 

Consequently, defining dk = max  |F.(S-S..^|, there exists a random 

variable M. such that 



•- ...  .iMllllll llllii I llWIli **-'..»■«■■-, .^>«i.JMK^|IWP'     ■■■      ■ '  

+ |M1  ^  ^-V + 2 Vv(lOdK    • 
o 

n 
DefinlnR  a =       n     (1-B„)ß.,   it  remains  only   to show  that 

n»1        t»i+l ^     1 

K-l 
' d    a^S'   0 as   K + ».     Clearly,   for all  fixed K  a., , , 6,  P, vi ,, v-, 

, ,   K-l,k k  k  v(k) k 
k=k 

o 

i > k , a  . a*>s' 0 as n *■ <*.     From Lemma 1 of Albert and Gardner 
0  n'1 

(1967,   p.   189),        I     ia        |   =   1-  ir       (1-B.),   which  converges a.s.   to  1 
i = k       "' 1-k 

0 0 

as  n ■»■ 0D.     Consequently,   by   the  Toeplitz  Lemma   (e.g.,   see Knopp 
K-1 -1 -1 

(1947,   P.   75)),   lim    Z       a ^(k)\Pk\    '  .J1™ %(k)dkPk&k   ' 
N      k=k k-x^ 

o 

Bv  Assumptions   (2.2)   and   (2.5),   W,,/UNPIX    
=:: T« is bounded; vu; K K  o Pv(k+1)_] 

i   i a. s. n 
'lence,  B,    >  0 as n -> a\ 

1,11' 

(3.3) C:OROLIJ\RY. If IM,} aatiefiea Aeewnption (2.8) and  I I^Vj 1 

ia a.s.   uniformly bounded (in k),   then Assumptions   (2.3) and (2.7) 

may be deleted and Theorem  (3.2)  remains true. 

PROOF,  It suffices to consider M. = k  .  Since 
k 

IF (S-S  ,)|<1|F ||'|S-S  .1, Assumption (2.6) implies Assumption (2.7). 1 n   n-1 '— ' n      n-1 

The Borel-Cantelli Lemma and the Chebychev inequality can easily be 

applied to show that Assumption (2.3) is satisfied. Q 

4.  Sufficient conditions for Assumptions (2.3) - (2.7).  Several 

auxiliary lemmas will be needed before the main result of this section, 

Corollary (4.5) may he stated and proved.  Thn following lemma is a 

reasonably straightforward extension of Theorem A presented by 

i       ■      ■ ■ ■ -- ■■■ ; 
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Serf ling   (1970).     Consequently,   the  proof will  be  omitted. 

(4.1)    LEMMA.    Let  {x. 1 be a sequence of random variables,  a%eR , 

having finite  "vari^ces" o 2 = Eiix.-Eix ))< (x    - E(x ))].    For integer 

n  >   1 define X a,n 
(xa+v...,xa+n),  Sa^n 

I      , ..x.,  and U„ M 
m max tm a+ 1    t a}n 

i\s a. 
San\h     For n <-l define X^ *  te^+p .,  x ),  S 

'    a        a,n 

a, n 
,,|S       J }•     For  \n\>_J  let F 

as-J a»n S x.,  and M       « max { \S 
t=a+n+I    z a,n 

denote the distribution function for X^ ,and let g  (F^) be a functional 

depending o- F      .    Let a   be an arbitrary but fixed integer and let 

v > 2.    Suppose g  (F^J + g  (F^)  <_ G  V^ ^ all a > a^and 

11k±k+lorao-a^k+i^k±-l such that Et^^^g    W^ 

for alla-Laoandn>_lorao-a<_n <_ - 1.     Then EW^)  1 (log22\n\r 

aliv(F      ) for all a > a„ and n ^  l or a    - a ±n <_ -h 
J        a,n 0 u 

(4.2)     LEMMA.     Let ^ £ = a
£ /, and V{k>l)  = V{l'k)  be ^al-valued 

functions defined for ill non-negative integers ktl.    For 1 ^ n < m 

define 

(1)     Y 
m m 

I      ah    D(k,l) 
n,m      , ._       KJ Ji ««M    l=n 

m-n    m-u 
2    1        I      « 

u= 

m 

k=n      k'k+U k=n      W 

Suppose that   \p(Kk+u)\  = 0(u~v) uniformly for all positive integers 

k.     If a        =  1 and 0<v<li  then for large m-n, 
•'    k^i 

(2) n}m
l ! = orrm-nr  ; 

Finally,  if \ l
m V^tf   vk = 0(k~  **  and 0<V<1,   then 

(3)     |Y  | =0(nW(^])). 1 ^n,m ' 



in 

PROOF.  Suppose that ». « " 1 and |p(k,k+u)| = Ö(u~V), 0<v<l, 

uniformly for all positive integers k.  It suffices to consider 

|p(k,k+u)| = (|u|-f )   in which case (from (1)) 

m-n m-n+1 
Un ml 1 

2(m-n+l)  S  (u-t-]fV<2(m-n+1 )(1+/  x"Vdx). 
u-0 i 

The result  (2)       follows easily by evaluating the above integral. 

Suppose now that ak £ = H^, ^ = Oik'1),   and |p(k,k+u)| = 0(u~V), 

0<V<1, uniformly for all positive integers k.  For this case, it 

suffices to consider Pk = k  and |p(k,k+u)| - (|u|-tl)"v.  Then from (1) 

m-n        m-u  i    i i    _i 
Kn ml 1 

2 S  (u+l)"V  / x" (x+n)~idx + (n-1) i - m'" 
'     u=l        n-l 

m-n  1 

• 2 I    u"i(u+l)"V ß     + (n-D'-m"1, 
u=l n,m,u 

where  ßnjmjU =  in  ((m-u) (n+u-1))  -  £n(ni(n-l)).     Ifl£u<       I ± n < m, 

then  en m u 1 in(n+i-l)   - £)i(n-l).     Ifl<£<u<n< m-n,   then 

6,, m      <  in 2.     If n <  u  < m-n,   then ß <  %n(\x). n.m»ii— —      — n,ra,u — 

Consequently, for all 1 £ Ü £ n-2 < m-n-2, 

i    i n+£-1 n-  -l-\) 
Y     < 2£ in   (? *i)  + 2 £n 2   E u n'm ~        n-l ; _ u=£+l 

m-n 
+ 2  E  u "V£U u + (n-l)  -m . 

u=n 

□ 

Letting £=n , l>ß>0, and using the fact that In   (l+x)<x for all x>-l, 

it follows that there exist constants c.^ c2, and c3 such that 

Finally, if ß = (v+2)"1, then U  I « Ö(n"v/v+2). Q 
n,m' 
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(A.3)  LEMMA. Define 

.ErFjAr^rF.-t-rTj;^'rFrErFjj^^Fm-ErFm;;;w 

w -i 

ö < a </. De/ine the sequence {^(a)) by v^a) = 1, \+1(^ = \(a) + pk(a)' 

k = I,",...,  and define J^a)  = {^(a) ^v^al + l,... ,vk+1(a)-l}.    If 

Assumption    (2,4)   holds and 

'r     dJi^m)   <  " 3 (1)     I   PJa)      z 
k'l i,,i,t,'nt'Jk(<0 

for some  a, (7 < a <h  and for some positive integer a,  then Assumption 

(P.. 5)  is satisfied. 

PROOF.  Define G,(a) = P^U) I F. and R (a) = P^Ca)  E  JC^) 

Let E be given such that 0 < E < X^ (R).  Since 

it is sufficient to show that there exists a random sequence {vk(5)}, C 

an integer-valued random variable with 5 a.s. finite such that 

no  fRI - L- < X  (G U)-R) + X . (R)<X  (G (fJ-R) + X  (R) 
min( '       min It ;      minv -max k        max 

Atnax 

for all k, or, equivalently, that 

max |w'(G (f)-R)w| < e for k = 1,2,....  Hence, it is also sufficent 

M = i  k 

to require the stronger condition that 

max|w'(G rO-\(0)w| + max|w'(Rk(0-R)w| < e 

|w!= i  k |wl- i 

for all k .  By Assumption (2.1), there exists a positive integer q1 

such that for all sequences {vk(a)} with a > ^  we have 
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max tw'Cy^-lOwl < e/2.  It follows from Assumption (2.4) that for 

ill"i.l.2  there exists an a.s. rinite random variable 5* such that I 

max maxlw'^aViyoM   <  e/2. 
l<k<n  |w|»l 

* 
Let S be the smallest such F^  so that ^ 1 q^■ 

n 

It follows that 

/■    I,■'(•,- c-a^-p ra,i")wl>e/2 for some k, l<k<n) p (J >a>q1 ) ^p ( max jw (Gk(,a;-Rk(.a^wl_,:-'^ *■"*   
n- - I      |w|=i 

< E p ( max |w'(Cäk(a)-Bk<a))w|>e/2) 

k=l   M=l 

< I   (fP, (a))'4 K(maxlw'(Ok(a)-Rk(a))wlS 

k-1 lwl=1 

= (^)4 E (Pt(a)"
A  2      YpCi.J.8-.0)- 

e k-1 k    i,j,£pieJk(a) 

By hypothesis the above series converges as n - ».  Applying the 

definition of Pk(a). it follows that for all ^ > 0, there exists 

a positive integer N^) such that for all a > NCe^ we have 

Urn PiE,  >a>q1)<ei.  Consequently, ? = sup 5n is a.s. finite and 
n it n 

Assumption (2.5) is satisfied. 

(4.4) LEMMA. If there exists a veal-valued function f(k,k+u) 

0(\u\'*)>&>J>  uniformly for all positive integers k such that 

lYF^il,m;!< A^/r^ ^ f(ij)f(i,l)f(j,m)f(l>rn), 

then Aeaumfition  (2.5) it; satisfied. 

PROOF. 

It suffices to consider f(i,j) " (|i-J|+l) • 



■ 
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Define the ijth element of a matrix A to be f(i,j).  Then 

b  b  b  b '+     2 2 
Z      Z      I       l     f(i,j)f(i,Ä)f(j,in)f(£,m) = tr(A )<(trA ) . 

i=a j=a t"a m=a 

The iith element of A" is given by 

9      i-'       -?R    ^        -2ß 
(A^)  . = Z     (i-nH-1)  P +  Z  (m-i+O 

1,1  m=a m=i+l 
+ 1 

..  ,,.1-23 J   ,. ..-.1-28 < c (i-a+1)    + c2(b-i+l)    , 

for 0<$<k  and some positive constants c and c .  Consequently, for 

some 

b  b 
E  Z 

i=a j=a 

constant C-, tr(A2) <^ ^(b-a+l)   0J and hence tr(A ) = 0((b-a) *  ) 

From Lemma (4.2), ( E  Z     f2(i,j))2 = Ö((b-a)4"4ß).  Clearly, (4.3.1) 

be satisfied if E k~4a k~ ~  <00.  It follows that Assumption (2.5) 
k=l 

is satisfied for l>a>l/43 if ß^- 

(4.5)  COROLIJiRY.    Suppose that Assumptions   (2.1),   (2.2),  and 

(2.5)  are natisfied.     Define P/KD - ECF^^  - EtF^EtF^, 

Pc(k,l) - E(C'kCl)  - E(Cj,)E(Ck),  and p^k^n) = EffC^EfC^DF^fCfEtt^)))> 

where all expectations are assumed to exist. Suppose that for some 

s»0t M
V
 mar {\\pF(k,k+u)\\,\pc(k,k+u)\,\pFC(k,k+u3n)\] is uniformly 

bounded for all non-negative integers k,  u, and n.    Further suppose that 
00 

g    =    l    VtßCCj  exists and that there exists a constant $ > 1 such that 
n      k=n    k      k 

a. s. 
E   \g  rE(\\F  IP«*.     Then   \vj 

n=l 
0 as n-K». 

 i ".■■■ 
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a+n 
PROOF.  First consider Assumption (2.4).  Define S   =  Z 

a'n  k-a+1 
p 

(F,.-K(F, ))w, wliere weR .  Clearly, Assumption (2.4) is satisfied iff 

-11    i a. s. n  |S  | V "0 for all positive integers a as n -> <».  Define 

M   =: max (JS   |,...,|s   |}.  Let {n } be an increasing sequence 

of positive integers such that n. ■»• » aa k -♦• ».  For all n, < n < n, ,-1 
K k —  — k+1 

(1) "  'Sa,n'-nk lSa,n(k)-ll+ nk Ma+n(k)-l,n(k+l)-n(k)' 

To apply Lemma (4.1), define g(F  ) as 
a ,n 

„ a+n  a+n 
(2) g(F  ) = |w|    Z    E ||pv(k^)||= 0(n    V), 0<v<l, 

d'n        k-a+1 £=a+l  F    " 

uniformly for all positive integers a, from Lemma (4.2),  It is 

easily seen that g(F  ) satisfies the needed conditions of Lemma a,n 

(4.1).  Letting nk
=ka, n  E(|s   , , | ) is summable for all a>\)~   . 

The Chebychev inequality and Borel-Cantelli Lemma thus imply that 

"k |Sa.n(k)-lla48' 0 a8 k . ..  Letting ^ = Ma+n(k)_1? n(k+]>.n(k)j 

(3) n-2E(^) = 0(n-V(log2 2 (n^-n^ )2), 

from (2) and Lemma (4.1).  Substituting n = ka into (3), the Borel- 

Cantelli Lemma and the Chebychev inequality imply that n~ K,^3'   0 
K.   K. 

as k ■* » for a > v  .  Consequently, from (1), Assumption (2.4) is 

satisfied. 
a 

Now consider Assumption (2.6).  Define S   =  E   p, (C -E(C )), 
a'm  k=a+nri-l k k   k 

\*  =  m*{K,J lSa,-ll}' and ^Fa,m)=   '    ^    V£lPC(k'e)l 
k=a+m+l «=a+ i-l K ^    t- 

It Is easily seen that g(F  ) satisfies the needed conditions of 

Lemma (4.1).  From 

■ 
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Lemma (4.2), E(|S   ,. J2; = 0(n'V/(Vf2)) for all a > n.  With r^=ka, 

the Chebychev inequality and the Korel-Cantelli Lemma thus imply that 

* - -1 
S_S     -a    =  ?:  u (C. - E(C,))a>S' 0 as k -* * for a>\)     (v4-2) . 

n(k)-l Sn(k)   .=   i  1     i 
1 nk 

Consequently, s-sn(k)_1 
a"vS* 0 as k •> ».  For all nk <. n < ^j-1, 

(4) Is-s^lils-s^^J +Ck + bk, 

where h -  Mn(k+l)-l,n(k)-n(k+l) 
and bk iS a SeqUenCe 0f POSitlVe ^ 

stanl s converging to zero as k ->■ ".  From Lemmas (4.1) and (4.2), 

(5) E(Ck) - 0((log2 2(nk+1-nk))
2n-v/(V+2)). 

Substituting n = k  into (5), the Chebychev inequality and the Borel- 
K. 

Cantelll Lemma imply that ^  '-V '0 as k ->■ ^ for all a > v  (v+2). 

Consequently, Assumption (2.6) is satisfied. 

Finally, consider Assumption (2.7).  Define Z   = F (C -E(C )), 
iC y II tl     K. K 

a a a 
S = E y.Z.       ,    ,1,andg(F       )=        E E       p  y   |p      (k,£,a-hn+l) a'm      k=a+nH-l    kk.a^l a,m        k=a+In+1   Ä=a+m+1 ^    FC 

Proceeding as above,   E(|S -, I   )  = Ö(n~V )   for all  a > n. 

\ 
a -I With n,   = k  ,  a >  v     (v+2),  we have 

a. s., 
Fn(k)(S-Sn(k)-l)-Fn(k)gn(k)   '   Jv   ^i  Zi,n(k)   *    0' 

"k 

as k-H».  Since E Ig |eE(||F l|ß)<m, the Karkov inequality and the 
'0n      n'' 

n=l 

3. S . 
Borel-Cantelli Lemma imply that F g  -> '      -».  Consequently, for 

all n, <n<n1 . ,-1. 
k- - k+1 

where ^ = Mn(k+1)_1<n(k).n(k+1) and ^ a^s. 0 as k-. Since |k 

satisifes (5), L^ 0 as k-x». Consequently, Assumption (2.7) is 

satisfied. 

IL & iÄ__ 
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n„aU„ B>1 ^  v„ - «(n"1) -^ P'^ tl- ^^n11^ ' by ^ 

K.rkOT i„e,uailt, and the Bor.l-tot.Ul Le^-a, and hence, assumption 

(2.3) is satisfied. 

Consequently, from Theorem (3.2), Ivja.s. 0 as n-.      Ü 

(4.6)  REMARK.  An important ancillary result contained in 

Corollary (4.5) is that sufficient conditions for the strong consis- 

tency of the usual sample covariance function are provided.  For 

,   ^r U T be a zcrr mean wide-sense stationary real-valued 
example, let ^L«, 

normal random process and define p^v) = E^x^).  Consider 

, ,.   - x x     it is easily shown that for this case, PF(k,k+v) = 
Fk  \W k k+u. 

|p2(v)+Px(v+u)px(v-u)|.  The proof of Corollary (4.5) shows that if 

p (u)-0(Xu-V) for V>0. then n^J^ x.x^ V'p^v) as n ^.  A 

similar result, presented as Th^eorem 8B of Parzen (1961), states that 

-1 n"j.v! x x  , *l*'o   (v) as n - - provided that there exist positive 
11   lil   k k+lvl     X   , n-l k_1        u t-u.,,- n"1 r P? (u) < en q for all positive integers constants c, q such that n   i  Px V"^ _ 

n.  The conditions of Parzen (1961) are clearly satisfied by Px(u) = 

Oiu~V)   and v>0. 

(4.7)  REMARKS.  Recall that sufficient conditions for Assumption 

(2.5) have been presented as Lemmas (4.3) and (4.4).  Lemma (4.4) is 

useful for several specific choices of {Ffl}, as shown below in Section 

5.  In case (HFJU is bounded, or if i^}  and/or {Pj are deterministic, 

then the conditions of Corollary (4.5) are simplified, as shown below 

in Corollaries (4.8)-(4.11)■ 

(4.8) COROLLARY. Let  p^ Pg,  ^d  ^ be as in Corollary   (4.5). 

Suppose  that ABBumptions   (2.1),   (2.2),  and (2.5) are satisfied,  and 

that i\\P \\)  ^ bounded.    If there exists a  v>0 such that  uv max 

{\\,FrKMu)\\,\?0(k,k+u)\} is uniformly hounded for all non-negative 
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00 

integers k and u,  and there exists a  $>0 such that    I   \g  | ß<coj then 

I *L I "* 0 as n-**. 

PROOF.  Simply öpply Corollary (3.3) to Corollary (4.5).   11 

(4.9) COROLLARY. Suppose  that    F      is deterministic,  and that 

Assumptions   (2.1) and  (2.2) are satisfied.    Define  p (k,l)=E(P'P )  - 
oo P k i 

E(P^)E(Pl)y  and  ^ = I    y^^YP^J-F^j. If there exists a \»0 such 

that u  \pjk}k+u)\  is uniformly bounded for all non-negative integers 

k and u,  and if g    -+ 0 as n -> *> then   \V  |a-Vs* 0 as n ■+ <» 
n '  n 

PROOF.  An obvious consequence of Corollary (4.5). U. 

(4.10) COROLLARY, Suppose that {P ] is deterministic, and that 

Assumptions   (2.1),   (2.2),  and  (2.5) are satisfied.    Define p^Jk,!.^) = 

2 - 
E((Fk-E(Fk))Fn(FstrE(F&))}i and gn=    I    ^^(FJ w ),   If there exists 

v k==n 

a v>0 such that u   max {\ \pF(k,k+u)\\,\ \pFF(k,k+u,n)\\] is uniformly 

bounded for all non-negative integers k,  u, and n, and there exists a 
CO 

ß>i such that    l   \g  \®E(\\F  II3;«», then  \v  |a^s' 0 as  n-*». 
n= i    r- n n 

PROOF.  Follows directly from Corollary (4,5). Q 

(4.11) COROLLARY. Suppose that both {F } and {P ] are deterministic, 

and that Assumptions  (2.1) and (2.2) are satisfied.    If      Z    MV  (P -F w ) 

exists,   then   \v  \  -* 0 as n -* °°. 1 n 
PROOF.  Trivial case of Corollary (4,5). Q 

5,  Application of Corollary 4,5. 

(5,1)  Special families of F and P ,  Let {X.}"5 be a sequence 
n     n       j -oo       n 

of R -valued zero-mean random variables and let {s.}" be a sequence 

of real-valued zero-mean random variables.  Define R (k £) = E(X. X') 
xx Tc £ ' 
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P   (k,£)  =  F,(s X.)  and  p   (k,£)  =  E(s  s  ).     Suppose that R     (k,k+u), 
S K X- S K X. XX 

P (k.k+u), and p (k,k+u) are periodic in k with period N.  Define 
S  -1 N      S -1 N R « »  I  R  (k,k) and P = N  TV   (k,k).  It will become apparent 

k=l  XX k=l  S 

in what follows that R and P satisfy Assumption (2.1). 

Suppose that it is desired to choose WER to minimize C(w) = 
N 2 E E((s -w'5C) ).  Such problems arise frequently in adaptive 

k=l 
transversal filter channel equalization in digital comnunications. 

When N = 1, the problem reduces to the use of jointly wide-sense 

stationary sequences {s.} and {X.}.  Assuming that R is positive 

definite, the desired solution, w , is given by w = R P.  Assume now 

that R and/or P are unknown, and that it is desired to use algorithm 

(2.1.1), with F and P functions of the observed time series, {X.} and 
n     n J 

fa 1, to recursively estimate w ,.  Obvious candidates for F and P 1 j ' o n     n 

are 

-1 
I X.X.', (1)  F  = K 
i=n-K +1  J J 

n 

and 

-1 
(2)  P = K ^ Z s.X., 

n   n j-n-K +1 J 2 

where K is a positive integer; e.g. K = 1, K, or n.  In fact, algorithms 
n n 

represented here by (2.1.1) with F and P given by (1) and (2) have 
n     n 

frequently appeared in the engineering literature for consideration in 

a wide range of applications. 

Note that if K = K (a constant), then E(F ), E(P ), and 

E(C ) are all periodic (in n) with period N.  Furthermore, for any 

n > 0. N   I  ^iP = 0"  If' in addition {\} satisfies either \i    ■ 
k=n 

k     -1 -1 a([rr] + b)  or y = a(k+b)  , where a > 0 and b ^> 0, then it can be 
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shown that |g | = | E y, E(C )| = 0(n~   ).     If, for example, E(||F || ) 

is bounded (in n), then E  |g | E(||F 11") < ", thus satisfying the 
n=l 

conditions on Ig }stated in Corollaries (4.5) and (4.8)-(4.10).  Of 
n 

course, many other choices of (u, } are permissible.  Finally, if K = N, 

then E(C ) S 0, and the conditions on {g } are a fortiori  satisfied. 

The remaining conditions on {F } and {P } stated in the preceding ft n       n 

corollaries are quite mild "asymptotic covariancr. decay rate" conditions. 

The strongest of these decay rate conditions is that imposed on YF via 

Lemma (4.3) in order to satisfy Assumption (2.5). 

Regarding the covariance decay rate conditons in the corollaries of 

Section 4, it may be helpful to note that 

(3) pc(k,£) = ppCM) + w^pF(k,£)wü - ppF(k»£) wo - ppFU,k)wo , 

where p  and p« are defined in Corollaries (4.9) and (4.5), respectively, 

and p  (k,£) - ^(P^F^) - g(P')E(F.),  Furthermore, PFC can be expressed as 

(4) pFC(k,£,n) = ppFp(k,il,n) + w^ pFF(k,£,n)wo 

-ppFF(k,il,n)wo-ppFF(£,k,n)wo, 

where p^ is defined in Corollary (4.10) and ppFp(k,£,n) = KCP^-ECP^))' 

F^(PrE(Pfc))), and ppFF(k,£,n) = E((P^-I(P-))lJ(Fjl-E(FÄ))).  The results 

(3) and (4) simply express the conditions on {F } and {C } stated in the 

corollaries of Section 4 in terms of similar conditions on {F } and (F )• 

In view of the widespread consideration of algorithms fitting the 

framework of (2.1.1), (1), and (2), it is of interest to reduce the moment 

conditions on [F 1 and (P } stated in the corollaries of Section 4 to moment 
u      n 

conations on iX.t and (s.l.  In case {X.} and {s.} are normally distributed, 

greatly simplified conditions can be established for this family of 

algorithms, as shown in Section (5.2). 

i 
I 

HHMI ■ ■ j" ■'■■' 
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(5.2)  The nonral case.  Assume the aame notation and structure as 

in Section 5.1.  Further, assume that all random variables involved are 

jointly normally distributed.  Then all of the "covariance decay rate 

conditons" for if   I and [P } stated in the corollaries of Section A and 
n       n 

Section 5.3 can be expressed in terms involving the covariance functions 

of elements of CX.1 and (s,).  In order to accomplish this, some pro- 

perties of joint monents of normally distributed random variables are 

required. 

Let E,. z„,...,z0  be zero-mean jointly normally distributed with 
12     o 

E(z z ) ■ o(l,J).  Using the properties of the characteristic function 
i j 

of z , 2.,...,2-, It is straightforward to show that 
1   2     8 

4 

(1)  E( n (7-2i-i?'2i  " 0<2i"1» 2i))) 

- Z ... E a(£ ,«,)a(Ä ,«,)...o(£,£), 
I I 
1    8 

where the summation is over all possible ways of combining J.^,^» • • • . ^g 

e{l,2,. . . ,8}, ZjSL.   for i^j , into four distinct unordered pairs, no 

pair of which is (1,2), (3,4), (5,6), or (7,8).  There are sixty terms 

in the sum. 

With F  given by (5.1.1) and K = K, and defining f(k,£) = max 
n n l<i.j<p 

1 (R  (k ?,))   I, (1) can be applied to show that the conditions of 
xx     *• > j 

Lemma (4.4) are satisfied if for some v > l/4. 

u max    (R  (k,k+u)). , 
....    xxv      i,j 

is uniformlv bounded for all non-negative integers k and u.  Similarly, 

if for some v.^O, 
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v 
u   max {|(P (k.k+u)) l,|p (k,k+u)|} 

l<^<P 

is uniformly bounded for all non-negative integers k and u, then the 

decay rate conditions stated in Corollary (4.5) on p_, PC, and PFC are 

ail satisfied.  Consequently, each member of the family of algorithms 

represented by (2.1.1) with F and P given by (5.1.1) and (5.1.2), 

and K = K converge a.s. to  w provided that, in addition, {y. } and K 
n o K 

are chosen as discussed in Section 5.1. 

For example, let {x. :ke{0,±l,...}> be a real-valued zero-mean wide-sense station- 

ary öutoregressive-moving average (ARMA) normal random process.  With 

\ = (V Xk-1"--' Xk-p+i
r and Sk ■ \+a (inte8er a)' ^ "^^ 

decay rates of (5.1.3) are easily established.  Hence, each member of 

the family of algorithms represented by (2.1.1) with Fn and Pn given 

by (5.1.1) and (5.1.2), K = K, and {v^} satisfying Assumption (2.2) 

converge a.s. to w . 

6.  A simple almost sure convergence result. 

(6.1) THEOREM. Suppose that Assumption  (2.1) holds and that there 

exist sequences  [a/^ and {bj*^ of non-negative veal numbers  (possibly 

random)  satisfying  \\ F^W^ and  I F^-Pjl^- Furthermore,  suppose 

that  there exists a positive integer  n^ (possibly random) such that for 

all  n>V 0 <vn  *min(R)<]- Then f0* aU  n-V 

n 

W     iV/l-^n \*U ^h)+max (W '   "imJt-W** 
n <k<n 

o  

where tL  = ^n^^^p;    Furthermore,  if faVyd^'*'* and bn<f     %'8    0 as 

n-***   then   \V  |^'&"(7 as «-H». 
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PROOF.  From Assumption (2.1), 

V   - V -V RV -v   (F V +F w -P -RV ), n+1   n  n n  n n n n o n  n 

so that for all n:Ln » 

(2) ivn+1!i(i-ynxmlnW)|vnl-Hint|F^I!-lvni*ynlVo-pnl 

< (1-M d )|v I+JJ br . n1  n n 

Iterating (2), for all n>n , 

n  n .-1. 

o    o 0 

Since all terms appearing in the sum in (3) are a.s. non-negative, U) 

follows immediately from (3) with the aid of Lemma 1 of Albert and 

Gardner (1967, p. 189).  Furthermore, if |=1^k
d
k^'

S*00 and bn
d
n 
V "0 as 

tt*", then (3) and the Toeplitz Lemma show that |Vn|-
>'" '0 as n-^0.      u 

(6.2)  Remark.  Theorem (6.1) is applicable to the case discussed 

in Section 5 with K." k. 
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extremely difficult (if not impossible) to satisfy when the •training 
data* is a correlated sequence.  In contrast, the new convergence results 
incorporate moment jonditions and covariance function decay rate condi- 
tions.  The ease vith which these results can be applied in many cases 

is illustrated 
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